MIDTERM 2 MATH 430, SPRING 2014

There are 5 problems. All problems have equal value

Name:_____

Problem	Score
1	
2	
3	
4	
5	
Total	

Problem 1. Complete the following definitions:

(1) A set $X \subset |\mathfrak{A}|$ is definable iff:

(2) The Compactness Theorem states that:

(3) The Soundness theorem states that:

(4) There is a deduction from Γ to ϕ iff:

(5) A set of sentences T is a **theory** iff:

Problem 2. Let $\mathfrak{A} = (\mathbb{N}; 0, +, \cdot)$. Give a formula in the language of \mathfrak{A} which defines the following. (Here the language includes 0, 1, +, \cdot , \forall , \exists , variables, equality and logical connectives).

 $(a) \ \{1\} \\ (b) \ \{3\}$

(c) $\{n \mid n \text{ is divisible by } 3\}$

(d) $\{\langle m, n \rangle \mid m \text{ and } n \text{ are coprimes}\}$

Problem 3. Recall the two equivalent statements of the Completeness theorem:

(a) If $\Gamma \models \phi$, then for some finite $\Delta \subset \Gamma$, $\Delta \models \phi$.

(b) If every finite subset of Γ is satisfiable, then so is Γ . Prove that these two statements are equivalent. Then prove the Completeness theorem from the Compactness theorem. **Problem 4.** Show that if x does not occur free in any formula in Γ , then the set $S = \{\phi \mid \Gamma \vdash \forall x\phi\}$ is closed under modus ponens (i.e. whenever ϕ_1 and $\phi_1 \rightarrow \phi_2$ are both in S, then so is ϕ_2). **Problem 5.** Suppose that σ has has arbitrarily large finite models. Show that σ has an infinite model.